
React.js

Course: Essential React.js by Eve Porcello on LinkedIn Learning
Notes by Nolan Zurek

Introduction: What is react

What is react?

Very popular library for building UIs
React is a JS library
Originally created at facebook, now open-source
React Native lets you create native mobile applications
Documentation can be found at react docs

React Developer Tools

Installed as an extension from the chrome web store
Command to open: control-shift-j (opens console) → components
If react is running on the page, a react icon will appear in the address bar

Introduction to React elements

Creating a react app

Building a project requires starting with a number of files
We can build it using the following command in the terminal (requires Node.js and NPM

This will create a react app at whichever folder we are currently in
Once we are in the react project folder, running npm start will launch the app in the default
browser
Alternative: using codesandbox (an online IDE

Simply navigating to react.new will create a new react project

What did create-react-app make?

package.json: contains information about versions, dependencies, etc
src (source) folder: contains the actual code

Creating react elements

We want to write code to add the elements we create to our page
The ReactDOM.render function is what will add elements to the page

Here, we have added an h1 element to the page with a style property and a message
"Message..."

Here, the style property is a nested object.
We can add any HTML property: href, src, class, id, etc.

The render function takes two arguments
First argument: the createElement call (the element we want to add)
Second argument: the parent element on the page that we want to append it to

We have just used JavaScript to add HTML to the page

Refactoring elements using JSX

What if we wanted to add a large number of elements to the page (for example, an unordered
list)?
We would need a lot of createElement calls
Not only that, but we would need to nest the createElement calls

npx create-react-app app-name

ReactDOM.render(
 React.createElement("h1", {style: {color: "blue"}}, "Message..."),
 document.getElementById("root");
);

JSX JavaScript as XML is an extension that lets you write HTML-style tags directly in
JavaScript

We can this to create complicated elements

This syntax is not natively supported by the browser. However, the project folder (created by
the setup process) has a tool called Babel, which compiles (or rather, transpiles) JSX into the
regular nested createElement calls that would need to be made

ReactDOM.render(

 One
 Two
 Three
 ,
 document.getElementById("root");
);

React Components

What are components?

Components are building blocks of the UI (small pieces)
There is already and app component in the project
We create a component by defining a function that returns JSX
A component must be exported, then imported into the main JS file in order to be used

We can draw this component to a page using the following code

The complete code for a component may look something like this
In this example, we have two components, where one uses the other

<coolHeader /> is a self-closing tag: we don't need to nest anything inside of it, so we can open
and close it in the same declaration

//component code
export default componentName

//main page code
import componentName from "path/to/component/file"

ReactDOM.render(<componentName />, /* parent element */)

import React from "react"
import "./myComponent.css";

function coolHeader() {
 return (
 <h1>I'm a cool header</h1>
)
}

function myComponent() {
 return (
 //note that react uses className instead of class
 <div className="myComponent">
 <coolHeader />
 <p>Some text</p>
 // etc.
 </div>
);
}

export default myComponent

Nesting components together can be used to create a larger application
Usually, the entire application will be nested into a Main component

Adding properties to components

We can pass a props element into a component function in order to parameterize properties to
the function
In our definition of the component, we can access the props object directly in the JSX

Parameters must be enclosed in curly braces {} to be accessible in the JSX
When we use a component tag, we can specify properties as we would normally in HTML

We can define whatever properties we want into a component call. The component may or may
not use them
A property can be of any type

Working with Lists

We can display an array (or any collection) of elements by mapping over it and adding each
item as a JSX element

//definition for coolHeader component
function coolHeader(props) {
 return (<h1>{props.message}</h1>);
}

//use of coolHeader component
<coolHeader message="Hi, I'm a cool header!"/>

//page contains an h1 element with inner HTML "Hi, I'm a cool header!"

//definition of dateDisplay component

<dateDisplay year={new Date().getFullYear()} />
//here, we are using a javascript class to get the current date

//if you know, you know
const skillsArray = ["8-2<". "12---o", "834/"];

//skillList component definition
//notice that the style property is in camelCase, not regular css "dash-case"
<ul style={{textAlign: "left"}}>
 {props.skills.map((skill) => ({skills}))}

//functional programming <3 <3 <3

//using the skillList component
<skillList skills={skillsArray}>

This is dynamic rendering: if we add another item to the array, the UI will update to include it

Adding keys to list items

Adding (unique) keys to list items is recommended so that array indices to not go out of sync (if
items are added to the list, for example)
One way to do this is to define the key as the position of the item in the list

However, this is recommended against because it can lead to rendering problems
Solution: instead of having the array contain strings (or whichever primitive type), we have it
contain objects with fields (ex. title for the string we want to store, id for the key, etc)

Displaying Images with react

Now that we have experience with text, we are ready for more
We will have to import the image

Then, we can simply use an img tag like any other HTML element

We can also use a url instead of a local image
React (and web) best practices suggest that images have alt text in order to be accessible, so
it should be added as a property in the JSX

Using Fragments

If we try two render two different components or elements, we will get an error
Any adjacent JSX elements must be enclosed in a parent tag

<ul style={{textAlign: "left"}}>
 {props.skills.map((skill, i) => (<li key={i}>{skills}))}

const skillsArray = ["8-2<". "12---o", "834/"];
const skillsObject = skillsArray.map((dish, i) => ({id: i, title: dish}));

//component maps from object to instead

//other import statements
import myImage from "./myImage.png";

We can solve the error (and render what we intend to) by wrapping the two components
in a div or section (or whatever)

However, this can lead to a lot of unnecessary nesting and tags to the DOM
There is a specific tag we can use: React.Fragment

This encloses the components App and App2 without adding anything to the DOM
The empty tag <>...</> is a shorthand for React.Fragment

ReactDOM.render(
 <React.Fragment>
 <App />
 <App2 />
 </React.Fragment>,
 //parent element
);

ReactDOM.render(
 <>
 <App />
 <App2 />
 </>,
 //parent element
);

React state in the component tree

Rendering elements conditionally

We can use the conditional features of JS (i.e. if-statements, etc.)

We could also write the App component using a ternary expression

Destructuring Arrays and Objects

We can essentially create keys for an array (or, depending how you think about it, create a
bunch of variables at once) by specifying them in the declaration

//defining some components to render conditionally

function secretComponent() {
 return <h1>Secret title!</h1>;
}

function regularComponent() {
 return <h1>Regular title</h1>;
}

//App component definition
//authorized <==> secretComponent is visible

function App(props) {
 if(props.authorized) {
 return <secretComponent />;
 } else {
 return <regularComponent />;
 }
}

//rendering

ReactDOM.render(
 <App authorized={false} />, /* parent element */
)

function App(props) {
 return (
 <>
 {props.authorized ? <secretComponent /> : <regularComponent />}
 </>
)
}

We do not need to create a name for every variable

In react, destructing is often used with the props object
If we pass the name of the attribute(s) that we want (enclosed in curly braces) as an argument,
the object is destructured and we can access that value directly

We can avoid the clunky dot notation

The useState hook

The best way to manage the state of a react application is the useState function
First, we need to import it

Calling useState returns an array containing two items
First item: state variable
Second item: function that can be used to update the state

We can pass a state into the useState function
This will be the initial state

const [fullOutPike, tripleTuck, Vachon] = ["8-2<". "12---o", "834/"];

console.log(tripleTuck);
//result: 12---o

const [fullOutPike, , Vachon] = ["8-2<". "12---o", "834/"];

console.log(Vachon);
//result: 834/

function App ({ myAttribute }) {
 return <h1>{myAttribute}<h1>;
}

import React, { useState } from "react";

const what = useState();

const what = useState("happy");

We can use array destructuring to grab both elements (current state and state altering
function) at the same time

We can use this function to alter the state inside of a component

We can declare as many state variables as we need

The useEffect hook

Used to manage side-effects that don't directly affect rendering
As always, we must import the function from the react library

useEffect takes a callback function (the function with the side effect)

It also takes in a second argument: the dependency array
If this array is empty, the props and state inside the effect will retain their initial values (i.e. it
will only be called during the first render, not after)

const [curState, setState] = useState("happy");

//we have a button that can change the state from happy to frustrated
function App() {

 const [curState, setState] = useState("happy");

 return (
 <>
 <h1>Current state is {curState}</h1>
 <button onClick={() => setState("frustrated")}>Frustrate</button>
 </>
);
}

//setting curState1 to "happy"
const [curState1, setState1] = useState("happy");

//setting curState2 to "tired"
const [curState2, setState2] = useState("tired");

import React, { useState, useEffect } from "react";

useEffect(() => {
 console.log(`The current state is ${state}`);
});

If the array is not empty, it should contain state values
Every time one of these values changes, the useEffect will execute the callback function

The useReducer hook

The reducer takes in a current state and returns a new state
useReducer takes in two arguments: the function used to change the state, then the initial state
The following code updates text so that it remains consistent with a checkbox

function App() {

 //the toggle reducer toggles the state variable checked
 const [checked, toggle] = useReducer(
 (checked) => !checked,
 false
);

 return (
 <>
 <input
 type="checkbox"
 value={checked}
 onChange={toggle}
 />
 <p>{checked ? "checked" : "not checked"}</p>
 </>
);
}

Asynchronous React

Fetching Data with hooks

Fetching data from external sources is a very common task
Example: fetching a JSON object from the GitHub API

JSON file of user data at https://api.github.com/users/username

Displaying data from an API

We can display something nicer than a string version of a JSON file
We can access properties of the JSON file in the same way we access properties of objects
(using dot syntax)

function App({ login }) {

 //initial state is null because there is no data initially
 const[data, setData] = useState(null);
 useEffect(() => {
 //.then executes functions in sequence if the promise is fulfilled
 fetch(`https://api.github.com/users/${login}`)
 //data is converted from text to JSON
 .then((response) => response.json())
 //state is updated; state variable "data" will hold the JSON object
 .then(setData);
 }, []);

 if(data) {
 //JSON.stringify turns the JSON data back into a string
 return <div>{JSON.stringify(data)}</div>;
 } else {
 return <div>No User Found</div>
 }

}

//rest of code...
if(data) {
 return (
 <div>
 <h1>{data.name}</h1>
 <p>{data.location}</p>

 </div>
);
}

https://api.github.com/users/username

Handling Loading States

When we make an API https request, there are three possible states
Loading
Sucsess
Failed (ex. broken url, etc)

We should be able to handle each of these states on our page

function App({ login }) {

 const[data, setData] = useState(null);
 const[loading, setLoading] = useState(false);
 const[error, setError] = useState(null);

 useEffect(() => {

 if(!login) return; //login was not specified, so we can't do anything
 setLoading(true); //if it is specified, we are now loading
 //.then executes functions in sequence if the promise is fulfilled
 fetch(`https://api.github.com/users/${login}`)
 //data is converted from text to JSON
 .then((response) => response.json())
 //state is updated; state variable "data" will hold the JSON object
 .then(setData);
 //we have the data, so we are no longer loading
 .then(() => setLoading(false));
 //if an error is thrown here somewhere, we will set the error state
 .catch(setError)
 //this gets called every time the login changes
 }, [login]);

 //possible things we can return

 if(loading) return <h1>Loading...</h1>;
 //if there's some error, it will be displayed on the page
 if(error) return <pre>{JSON.stringify(error, null, 2)}</pre>;
 if(!data) return null;

 if(data) {
 //JSON.stringify turns the JSON data back into a string
 return <div>{JSON.stringify(data)}</div>;
 } else {
 return <div>No User Found</div>
 }

}

React Testing

Using create-react-app for testing

The create-react-app packages includes testing features
If a file ends in test.js, it will be treated as a test
Running npm test will run all of the tests

Testing small functions with Jest

We can use a function called test (which comes from the Jest library, which gets included
automatically by cra)
There is also an assertion function called expect

React testing library

Another testing suite
Lets us render the output so that we can make sure it looks like what we expect it to

//in functions file

export function myFunction(a) {return a*2;}

//functions.test.js

import {myFunction} from "./functions"

test("Name of test", () => {
 //assertion that we expect to be true
 expect(myFunction(4)).toBe(8);
});
//test passes!

import { render } from "@testing-library/react";
import React from "react";
import App from "./App"

test("renders an h1", () => {
 //we have destructured the render function to get a function that
 //searches by text (getByText)
 const { getByText } = render(<App />);
 //we are searching for the text "Hello React Testing Library"
 //this uses a regular expression
 const h1 = getByText(/Hello React Testing Library/);
 //we expect our result to have this text in it
 expect(h1).toHaveTextContent("Hello React Testing Library");
});

getbyText is a query, which returns information about some sort of element using destructuring
This is part of react testing library

Testing hooks with react testing library

We will check the checkbox component that we wrote before

import { render, fireEvent } from "@testing-library/react";
import React from "react";
import App from "./App"

test("Selecting checkbox", () => {
 //destructuring to get getByLabelText function
 const { getByLabelText } = render(<Checkbox />);
 //getting the HTML element by searching text
 const checkbox = getByLabelText(/not checked/);
 //simulates an event happening (i.e. clicking the checkbox)
 fireEvent.click(checkbox);
 //we expect the checkbox to now be checked
 expect(checkbox.checked).toEqual(true);
});

React Router

Installing React Router 6

When we created react apps, we were creating single page applications
Instead of having multiple pages, JS just changes the current page when we interact with
it
But how to we get from page to page?

React Router is a tool that can help us
We can install it using npm

We will create a new file called pages.js, which will hold all of the pages in our app

Configuring the Router

The router lives in the index.js file
This is where we will pass the information from the router to any nested components

npm install react-router@next react-router-dom@next

import React from "react"

export function Home() {
 return (
 <div>
 <h1>[My Website]</h1>
 </div>
);
}

export function About() {
 return (
 <div>
 <h1>[About]</h1>
 </div>
);
}

//etc

//index.js

//imports
import { BrowserRouter as Router } from "react-router-dom";

ReactDOM.render(

The App is wrapped in a Router tag
When we specify a path, this is the path after the domain name

For example, /events would be at mySite.com/events

Incorporating Links

Navigating by typing URLs is not user friendly
We can use a Link component (inbuilt) which will create a link to a path we have set

The to property specifies which page the link connects to
We can also use links to make a 404 page that will be displayed if the user attempts to view a
page that is not in our routes

 <Router>
 <App />
 </Router>,
 document.getElementById("root");
);

//App.js

//imports
import { Routes, Route } from "react-router-dom";
import {
 Home, About, Events, Conact //these were all defined in pages.js
} from "./pages"

function App() {
 return(
 <div>
 <Routes>
 <Route path="/" element={<Home />} />
 <Route path="/about" element={<About />} />
 <Route path="/events" element={<Events />} />
 //etc
 </Routes>
 </div>
);
}

<Link to="about">About</Link>
<Link to="events">Events</Link>
<Link to="contact">Contact</Link>
//etc

//pages.js
export function Whoops404() { return(/* page content here*/); }

We can use the useLocation hook, which gives us our current location, to return a 404 message
that mentions the erroneous page specifically

Nesting Links with React Router

We can nest routes, which adds another layer of subpages
I.e. we have URLs in the form mySite.com/page1/page2

This is done by nesting Route tags

//App.js
//imports
import { ...Whoops404... } from "./pages"
//Routes
//other Route elements
<Route path="*" element={<Whoops404 />} />

import { ...useLocation... } from "react-router-dom";
//...
let location = useLocation();
<h1>Resource not found at {location.pathname}!</h1>

<Routes>
 <!-- mySite.com/ --->
 <Route path="/" element={<Home />} />
 <!-- mySite.com/about --->
 <Route path="/about" element={<About />} >
 <!-- mySite.com/about/services --->
 <Route path="services" element={<Services />} />
 <!-- mySite.com/about/history --->
 <Route path="history" element={<History />} />
 </Route>
</Routes>

