


Chapter 1 - Introduction to Codes
This is where most (though not all) students realize this course isn't about programming

Code Definitions
A code  is given set of  codewords, which are in turn finite sequences of symbols from the code's
Alphabet . E.g.  is a code.

A word or vector is any sequence of symbols from , so the set of words of size  is
. Not all words are codewords, i.e. . Generally, we

endeavour to encode words into codewords.

A code can be written as an  array where the rows are the codewords of . E.g.  from earlier

is represented by the matrix .

Distance
The Hamming distance  between vectors  is defined as the number of places in
which they differ.

The Hamming distance is a distance function because it satisfies

The minimum distance  of code  is the smallest distance between any two codewords in the
code. So,  because  and  have distance .

A q-ary code is a code with alphabet 

A binary code has alphabet 
If each codeword has the same length , the code is a block code.

Basic Code Parameters

An  code has  codewords of length  (i.e. a length of ) with minimum distance 

1.  if and only if 
2.  for all  and 

3.  for all  (the triangle inequality)

Formally, 



Error Detection and Correction

Channels
We assume vector  is transmitted and vector  is received, possibly having been distorted.

A communication channel is q-ary symmetric if each symbol has the same probability  of being
received in error, and each of the  possible errors for a given symbol is equally likely.
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Theorem 1.9

A code  can detect up to  errors in a given codeword if , and correct up to  errors
if .

By corollary (1.10) a code  can detect up to  errors and correct up to 

errors



Chapter 2 - The main coding theory problem
The main problem of coding theory is that I decided to take coding theory

What Makes a Good Code?
"Good" codes generally have

Equivalent Codes
Two -ary codes are equivalent of one can be obtained from the other by

Distances between codewords are invariant under this operation, so equivalent codes have the same
parameters , and thus have the same error detection and correction capabilities.

LEMMA 2.3  Any -ary  code over alphabet  is equivalent to an 
code containing the zero vector 

Optimizing 
We use  to denote the largest  such that a -ary  code exists, i.e. the number of
codewords that can exist in a code given  and .

Small  so that transmission is fast

Large  to require less codewords per message

Large  to correct many errors

Coding Theory

The main problem of coding theory is the optimization of one parameter  of a code
given values for the other two.

1. Permutation of the positions of the code → permutation of the columns of the code's matrix

2. Permutation of the symbols of the code → (internally) relabelling the symbols in a column of the
code's matrix

It is often helpful to assume WLOG that a code contains  when answering questions regarding
.

, namely when 



Aside: the number of -ary  codes is 

Binary Codes

Spheres and Sphere Packing
A sphere  of radius  around vector  is the set of vectors in  whose distance from  is
less than , i.e. 

For  error-detecting codes, we have , implying that the spheres with radius  centered
on the codewords of  are disjoint. This implies that we can simply pick the (closest) sphere a
received vector is in to decode it. This is an instance of nearest neighbour decoding.

A sphere of radius  in  contains  vectors

Codes that reach the sphere packing bound are perfect codes; the spheres of radius  centered at a
perfect code's codewords "fill" all of  without overlapping.

, namely when  is (or is equivalent to) the -ary repetition code of length 

Theorem 2.7

For odd , a binary  code exists if and only if a binary  code exists.

Corollary 2.8

For odd , . Thus, for even , 

Aside: the terms in this series correspond to the number of vectors of distance  from the center
of the sphere.

Sphere Packing Bound

A -ary -code satisfies 

This clearly follows from the sphere population definition

E.g. The binary repetition codes of length  are perfect codes



Balanced Block Designs

The parameters  are not independent; we find the following constraints (among others)

A balanced block design is symmetric if , which implies  as well.

We can describe a balanced block design by an incidence matrix, where the columns correspond to
blocks, rows correspond to points, and each entry is  or  depending on whether a particular point is
in a particular block.

Aside: balanced block designs have applications beyond coding theory, e.g. statistical testing
combinations of fertilizers on different crops.
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Balanced Block Design

A balanced block design is a set  of  points/varieties with a collection of  subsets of itself,
called blocks. For fixed , we have

Each block contains  points

Each point lies in  blocks

Each pair of points occurs together in  blocks

We define block designs by their parameters, i.e. we would say "a -design"
E.g. the seven-point plane represents a balanced block design

 is the total number of points in the design
 is the number of pairwise occurrences of a given point with any other point

https://en.wikipedia.org/wiki/Fano_plane


Chapter 3 - Finite Fields
It's pronounced "gal-WUAH"

Recap: Algebraic Structures

The following properties are implied by this definition:

Aside: combining  and  with inverses lets us define operations like  and 

Finite Fields: Basic Definitions
A finite field with order  is a field with a finite number  of elements.

Field

A field  is a set of elements equipped with addition  and multiplication  operations that
satisfies the following properties:

A field must also have the identity elements  and , satisfying for all :

1. Closure under  and 

2. Commutative  and 

3. Associative  and 

4. Distributivity: 

1. Additive Identity: 

2. Multiplicative Identity: 
3. Additive inverse:  exists where 

4. Multiplicative Inverse:  exists where 

Zero absorption/annihilation:  for all 

Cancellation law: 

Abelian Ring (in terms of field)

A abelian ring is also a set equipped with  and  that has the same properties as a field except
the guarantee of multiplicative inverses for all elements.

E.g. the ring  is a field (and thus a finite field) if and only if  is a prime number.



All fields for a given  share the same structure; the structure in general is known as the Galois field
of order , denoted .

Modular Arithmetic
Integers  and  are congruent modulo  (denoted ) if  for some integer .
Informally,  and  are congruent if they have the same remainder when divided by .

We find that for  and , we get  and , which further implies 
(all ).

Euler Totient Function
We define the Euler totient function or Euler indicator as the function

The Chinese remainder theorem states that  if and only if .

Primitive Elements
The order of an element  of a finite field  is the smallest natural number  such that .

Theorem 3.2

If a field of order  exists,  must be a prime power, i.e.  for some prime .

Aside: this mirrors the structure of a quotient space

This can be encapsulated into a field  if and only if  is prime, since otherwise we could find
some , which cannot happen for nonzero  in a field.

So,  is the number of integers less than or equal to  that are relatively prime with .

If  is a prime number, then  and  for any 
The second fact is true because  all have a factor in common with 

If we denote  as the set of integers in  that are not -divisors, then  since every
number sharing a factor with  is by definition a -divisor (i.e. can be multiplied with another
element of  to yield ).

This implies that  for all 



The nonzero elements of any finite field can be written as powers of a single element

A primitive element  is an element of order  in a finite field 

Polynomials

Minimal Polynomials

Every element  of a finite field  is a root of the equation  and is a root of some
polynomial .

For element , minimal polynomial of  is the monic polynomial  of least degree
with  as a root.

For  and  with  as a root, then  is divisible by the minimal polynomial of .

Primitive Polynomials

A primitive polynomial of a field is a the minimal polynomial of a primitive element of a field.

Reciprocal Polynomials

The following statements are equivalent:

Thus, successive powers of  eventually generate every member of , so

So, since every element in the field can be written this way, we can write any multiplication in 
as 

Primitive elements aren't necessarily unique;  will contain  primitive elements,
namely  for all  that are relatively prime to 

In , we (clearly) have  since  is by definition of order 

If  is primitive in , then .  is also a primitive element

Existence of the minimal polynomial can be proven with the division algorithm

 must be irreducible in .

By corollary, the minimal polynomial of  must divide .

If  then 

If  is a root of , then  is also a root of 



Alternate Interpretation of Finite Fields
Consider , with elements .  is a primitive element in this
field (since ), we can "solve"  using the quadratic formula to

find , i.e. we treat  like a complex number.

Being a third root of unity is equivalent to being a primitive element of ; we can think of  as
 or 

Aside:  (or more accurately, ) because, as mentioned,
every field with the same number elements is isomorphic. By the quotient construction of

, it has  elements (namely ), so it behaves the same was as any
"other" field with  elements.

Application: ISBN Codes

An ISBN-Code is a -digit number  satisfying 

Textbook pages: 31-40, Notes pages: 47-55.

1. If  is a nonzero root of , then  is a root of the reciprocal polynomial of

2. Polynomial is irreducible  reciprocal polynomial is irreducible

3. If  is the minimal polynomial of some nonzero , then a scalar multiple of the
reciprocal polynomial of  is a minimal polynomial of 

4. A polynomial is primitive  a scalar multiple of its reciprocal polynomial is primitive

The other root is , so we have 

So, it follows that , implying that  for some 

By inspection, we find  works, so ;  is a primitive third root of unity.

Similarly,  and .

If a single digit is unknown, we can figure out what it should be; there can only be one digit that
satisfies the equation



Chapter 4 - Vector Spaces over Finite Fields
Linear Algebra I Speedrun

For future chapters, we will find it useful to perform operations on codewords themselves, specifically
the operations defined in a vector space.

For prime power , we define scalars as  and vectors as . We define vector
addition and multiplication as we do for column vectors in linear algebra.

Aside: properties 1-5 define a vector space as an abelian group under .

A subspace is a subset of a vector space that is also a vector space. A subset  of a vector
space is a subspace iff it is closed under  and .

A set  are linearly dependent if there exist scalars  such that
.

Vector Space Axioms

A vector space is a set  (e.g. ) with operations  and  satisfying the following
properties:

Note that commutative multiplication and multiplicative inverses were not defined

1. Closure under 
2. Associative 

3. Additive identity 

4. Additive inverse 

5. Commutative 
6. Closure under 

7. Distributive law: 

8. Associative 

9. Multiplicative identity

The set of all linear combinations of a subset of vectors in  is clearly a subspace of 
.

Therefore one of the vectors in  can be written as a linear combination of the
others



A basis of vector space  is a linearly independent set of vectors in  that generate , i.e. a minimal
generating set.

The dimension of  (denoted ) is  if a basis for  has  vectors.
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If such scalars  don't exist,  is linearly independent. If this is the
case, we have the implication .

E.g.  is a basis of .

Every vector in  can be uniquely represented as a linear combination of basis vectors.

If  is a non-trivial subspace of , then any generating set of  contains a basis of ; this
basis is formed by removing redundant vectors from the generating set until it is linearly
independent.

Then,  itself will have  vectors since we operate over the field .

So, .



Chapter 5 - Linear Codes
Linear Code Definitions

A linear  code is a -dimensional subspace of . We may also refer to this as a linear
 code to specify minimum distance.

A linear code must contain  by the definition of a vector (sub)space.

Weight

The weight  of a vector  in a linear code is the number of non-zero components of , i.e.

But why Tho?

Advantages of Linear Codes

Linear Code

A linear code  over  is a subspace of  for positive integer . So, a linear code is
closed under addition and scaling: for any words ,  and  for scalar

.

E.g.  is a binary linear code

E.g.  defined above is a  linear code.

For  in a linear code, 

THEOREM 5.2  Thus, the minimum distance  of a linear code is the smallest weight of non-
zero codeword, i.e. 

Finding the minimum distance  of the code requires checking  codeword

weights instead of making  comparisons

We can specify a linear code by providing a basis for it, instead of listing all the codewords like
we would for a general code

Encoding and decoding linear codes is elegant; decoding a general code can be clunky



Disadvantages of Linear Codes

Generator Matrices
The generator matrix  of a linear code  is a  matrix whose rows form the basis of a linear

 code.

Equivalence of Linear Codes
Two linear codes are equivalent if one can be obtained from the other by permuting the positions of
the code or scaling symbols in a fixed position

Standard Form

Linear -ary codes are only defined when  is a prime power.
In practice, selecting a slightly larger  then necessary isn't a big issue though

There exist strong(er) codes that aren't linear, so a linear code might not be optimal (e.g. 
might be defined by a non-linear code)

E.g.  has  generator matrix 

E.g. a -ary repetition code of length  is a  code with generator matrix 

Theorem 5.4

Two  matrices generate equivalent linear codes over  if one matrix is obtainable from
the other by

1. R1  Permuting the rows

2. R2  Scaling a row
3. R3  Adding a scaled row to another row

4. C1  Permuting the columns

5. C2  Scaling a column

The row operations R1 , R2 , and R3  simply modify the basis for the same code, i.e. they
preserve the code itself, not just equivalence

Note: since these operations define row reduction, row reduction preserves equivalence

The column operations convert the generator matrix to one for an equivalent code



THEOREM 5.5  Standard form can be obtained by performing the operations R1 , R2 , R3 , C1 , C2  on
the generator matrix in question.
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Standard Form

The standard form of a generator matrix  for code  is , where  is the  identity
matrix and  is a  matrix. Standard form

In general, we can find the standard form by row reducing until columns for each standard basis
vector exist, then permuting the columns as necessary

Another algorithm is outlined in the text on page 51.



Chapter 6 - Encoding and Decoding Linear Codes
Encoding
Let  be one of the  possible words. We encode  by multiplying it by the

generator matrix  for our code . So, our encoded message is  where  is the th row

of .

When  is in standard form (i.e. ), then , where

,  being the th entry of .

Decoding
For sent vector  and received vector , we define the error vector  as .

Cosets

For  linear code over  and vector , we define the coset  of  as
.

So, our encoding is a function  that maps 

The first  digits are just the message itself (message digits); the rest of the digits are check
digits that exist as redundancies to protect the message against noise. This clearly illustrates the
purpose of encoding.

E.g. the cosets of  are  (i.e. just  itself) and
. Note how every vector in  is in one of these

cosets.

Aside: cosets and equivalence classes are different terms for the same thing;  is the
equivalence class  of  with respect to .

Lagrange's Theorem (Theorem 6.4)

For  code  over :

Every vector  is in some coset of 

Every coset of  contains exactly  vectors



For a given coset, the vector with the smallest weight is the coset leader.

Slepian Array

The Slepian can be constructed as follows

E.g. the Slepian of  is 

Decoding a Linear Code

Finally

We decode received vector  by finding it in the Slepian. The vector at the beginning of its row is the
error vector , so the first vector in its column will be the nearest neighbour in , and thus the
decoded vector since 

There is no partial overlap of cosets: either cosets are the same or entirely disjoint.

This implies that  is partitioned by cosets of any of its subspaces

E.g. the coset leader of  is , and the coset leader of  is  (or )

Multiple vectors may be of this minimum weight; picking one at random to be the coset leader
suffices

Slepian / Standard Array

The Slepian or standard array of a linear  code  is the (a)  array of containing
all the vectors in  where

In particular, the we order the cosets such that 

The first row consists of the codewords of , starting with 

The first row consists of the coset leaders of each coset defined by 

Each row is a coset 

1. List the codewords of , starting with 
2. Chose the word  of the smallest weight that isn't already in the array. List the coset

 in that row, where  is under  for each  in the first row.

3. Keep repeating 2) until the array is complete.



Probability of Error Correction

For binary  code  with  coset leaders of weight  (for ), then the probability

 that an arbitrary codeword is decoded correctly is , where  is the

probability of a bit being flipped due to channel noise.
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So, the decoded vector is the first vector in 's column.

The error rate  of  is defined as 



Chapter 7 - Dual Codes, Parity-Check Matrices and
Syndrome Decoding
Dual Codes
The dual code  of linear  code  is the set of vectors  that are orthogonal to every
codeword of , i.e. 

LEMMA 7.2  If such  has generator matrix , then  if and only if , where  is the
transpose of .

THEOREM 7.3   is a linear code of dimension , i.e.  is a linear  code.

THEOREM 7.5  For any linear  code , 

Parity Check Matrices
The parity-check matrix  for  code  is a generator matrix of .

The rows of the parity-check matrix are parity checks on the codewords. Namely, they constrain
certain linear combinations to be , encoding the additional structure built into the codewords.

Finding a Parity-check Matrix

E.g. for ,  can be found by inspection.

So,  is an  matrix satisfying .

We can equate ; thus, we can completely define a linear code by a
parity-check matrix, much like we can with its generator matrix.

E.g.  has parity-check matrix .

E.g. Parity-check matrix  defines the code

Theorem 7.6

If  is the standard form of a generator matrix for linear  code , then the parity-
check matrix  is defined as 



A parity check matrix  is in standard form if 

Syndromes

Syndrome Definitions and Theorems

For vector , its syndrome  is defined as the  row vector ,
where  is the parity-check matrix of linear  code .

LEMMA 7.8  Two vectors  and  are in the same coset of  if and only if they have same syndrome,
i.e. 

Syndrome Decoding

For large , array decoding is inefficient because it requires searching every entry in the array. As
, syndrome decoding becomes more efficient compared to array decoding because it

leverages LEMMA 7.8  to find the coset of  in  time.

First, we must augment the standard array by appending the syndrome  of each coset leader  to
the end of its corresponding row.

E.g.  has  generator matrix , so it has parity check matrix

THM 7.6  finds parity-check matrices in standard form.

We can reduce parity-check matrices to standard form like we did for generator matrices

If , then , and vice versa

So, there is a bijection between cosets and syndromes

Syndrome Decoding

The syndrome decoding algorithms is as follows for received vector 

1. Calculate the syndrome  of .

2. Locate  in the syndromes column of the array.

3. In the row where  is located, find  and decode as normal, i.e. the column header of
this column is the decoded vector.
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Aside: when implementing this, we can get even more efficient: we calculate , find its coset

leader  in the syndrome lookup table that has columns for each syndrome and its
corresponding coset leader. Then, the decoded vector  is ; the structure of the
whole Slepian is implied here.



Chapter 8 - Hamming Codes

Hamming codes are a family of linear, single-error-correcting codes over any  with elegant
encoding and decoding schemes. Hamming codes are most conveniently defined by their parity check
matrices.

Hamming Code Definition

The redundancy  of the code is the number of check-symbols the code has.

Obligatory 3b1b plug: https://www.youtube.com/watch?v=X8jsijhllIA
Encoding Simulator: https://visualizer-tan.vercel.app/#/heyming

Binary Hamming Code

The binary Hamming code  is the code whose parity-check matrix  has dimensions
 and whose columns are the distinct non-zero vectors of .

Note that the columns can be in any order; all codes with the same columns are equivalent.
In general, we write them in increasing order for simplicity

E.g. A parity-check matrix for ; we see that the corresponding  is

, so  is the binary repetition code.

E.g. A parity-check matrix for .

Theorem 8.2

For , the binary Hamming code :

1. is a  code

2. has minimum distance , and is thus single-error correcting
3. Is a perfect code

Proof sketch: 2) follows from every nonzero codeword having a weight of  or higher, 3) follows
from the sphere packing bound directly

https://www.youtube.com/watch?v=X8jsijhllIA
https://visualizer-tan.vercel.app/#/heyming


Decoding Hamming Codes
 being perfect implies the following properties

Extended Binary Hamming Codes
We obtain the extended binary Hamming code  by adding a parity-check to .
These codes are no better at decoding completely (in fact, they are worse because they use an extra
bit), but provide more error detection, making them better for incomplete decoding.

The parity-check matrix  for  is created by right-appending a column of s, then bottom-
appending a row of s to to the parity-check matrix  for .

The decoding process is as follows:

Relating  and Linear Independence

There are  coset leaders, which are precisely the vectors of  with a weight of 
or lower (i.e. )

Thus, the syndrome of  where the  is at place  is the th column of 

Decoding Hamming Codes

1. Calculate the syndrome  of the received vector 

2. If , then (we assume)  was the codeword sent, so no error occurred

3. If , we assume one error occurred;  is the binary number indicating the position
of the error.

E.g. for the  parity check matrix given earlier, if we receive , then
, indicating the error is at position . So,  is decoded as .

If the parity bit (i.e. last bit) of  is 
If the rest of the bits are also , then no errors occurred

Otherwise, we assume at least two errors have occurred, which we cannot correct

If the parity bit of  is 
If the rest of the bits are , assume a single error at the last place

Otherwise, there is an error at the place indicated by the binary interpretation of , like
before

Theorem 8.4



-ary Hamming Codes
For , any  columns of  must be linearly independent. So, for given redundancy , a

 code can be constructed by finding a set of nonzero vectors in  where any 
columns are linearly independent.

For , a vector  has  nonzero scalar multiples, so can be partitioned into

 equivalence classes, where  for some , i.e.  and  are linearly dependent.

We form  by taking one column from each equivalence class.

THEOREM 8.6   is a perfect single-error-correcting code.

Decoding -ary Hamming Codes

For  linear code  over  with parity-check matrix  any  columns of  are
linearly independent, but any set of  columns of  are linearly dependent.

Proof: follows from the property that 

This property characterizes , so we can establish  for any  given .

Any different matrices generated this way are equivalent.

Aside: this is a quotient structure.

Finding  for a -ary Hamming code

A parity-check matrix  for  can be formed by listing all the nonzero -tuples in 
whose first nonzero entry is .

E.g.  has parity-check matrix .

E.g.  has parity-check matrix .

E.g.  has the parity-check matrix 

COROLLARY 8.7  For prime power  and ,  for some .



Hamming codes are perfect, single-error correcting codes, so its nonzero coset leaders are the
vectors of weight  in . So,  implies no errors and  implies an (assumed) single
error. A coset leader for  looks like , where the  is at the th entry. So, , where

 is the th column of . So, the error is corrected by subtracting  from the th entry of .

Shortening Codes
We can shorten a code  of length  to code  of length  by selecting any codewords in  with
symbol  at position  (both fixed), then deleting the th entry from each word to form .
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E.g. For ,  and received vector , we find

.  is at the th position of , so we decode  as .

If  is , then  will be , where 

We get the corresponding parity-check matrix  by deleting the corresponding column of 



Chapter 12 - Cyclic Codes
Insert Ring Cycle pun here

A linear code  is a cyclic code if each cyclic shift of a codeword is also a codeword, i.e. for any
codeword ,  as well.

Often, for non cyclic , we can find an equivalent cyclic  by interchanging coordinates.

Polynomials
, now denoted  is the set of polynomials with coefficients in .

 has degree , denoted , and leading coefficient .
 is a vector space, but not a field since multiplicative inverses do not exist.

Division Algorithm

For any polynomials , there exists a unique quotient  and remainder  such
that , where .

The Ring of Polynomials 

Polynomials  and  are congruent , denoted , if 
is divisible by , i.e. .

We define  as the ring of polynomials over  modulo . This ring's domain comprises
every polynomial in  such that  (i.e. "smaller" polynomials), and addition
and multiplication are "carried out ".

Reducibility

E.g.  is a cyclic code

E.g.  is a cyclic code

Aside: this is the same structure as the division algorithm for  (ring shenanigans…)

It follows that .

E.g. the ring  has domain ; these are the values that must
populate the addition and multiplication tables.



Polynomial  is reducible in field  iff there exist  satisfying
 where . Informally,  is reducible if it can be "reduced"

into smaller factors.

Cyclic Codes

Definition and Characterization as Polynomials

We consider the ring , i.e. polynomials modulo .

For polynomial  in , we define a cyclic code  as the subset of  consisting of all
(polynomial) multiples of , reduced , i.e. 

 is only a field when  is irreducible in .
Irreducibility for polynomials is like primality for integers: any monic polynomial can be factored
into a unique set of irreducible polynomials

Lemma 12.3: Useful Observations for Factoring Polynomials

A polynomial  has linear factor  iff 

A polynomial  in  of degree  or  is irreducible if and only if  for all  in .

Over any field, 

, so we can reduce any polynomial by replacing  with ,  by ,  by , etc

Multiplying by  corresponds to a cycle shift, multiplying by  corresponds to a cycle shift
through  positions.
Polynomials  act like (and correspond to)
vectors . So, we can interpret a code to be a subset of either space; it
is algebraically useful to interpret it as a polynomial.

Theorem 12.6 - Characterizing cyclic codes

A code  in  is a cyclic code if and only if we have, for polynomials in ,

 (note that this is stronger than  simply being
closed under multiplication since  is arbitrary in )

In ring theory terms, cyclic codes are the ideals of the ring .

We prove  by considering  and , respectively



Generator Polynomials

We find all the cyclic codes in  are  in its entirety, , ,  with
respective generator polynomials , , , 

To find all the -ary cyclic codes of length , we

E.g. the code  in  where  produces the distinct codewords , , ,
, so  from before.

Theorem 12.9

If  is a non-zero cyclic code in , then

This  is the generator polynomial of 

A unique monic polynomial of smallest degree  exists in 

 is a factor of 

 may contain other polynomials of larger degree that also generate itself, e.g. the generator of
 in  from before is actually ; both polynomials generate the same code

In ring theory terms, every ideal in  is a principal ideal

The generator polynomials are pretty good for indicating how the codewords themselves are
actually formed; this is somewhat reverse-engineerable.

Theorem 12.12

If  is a cyclic code with generator polynomial , then the generator

matrix  of  is the  matrix ,

where row  is formed by cycling   times.

Factorize  over  into irreducible polynomials
If  has  distinct factors (remember, these are polynomials), it has  divisors (since they
each can either be part of the divisor's factorization or not), each generates a cyclic code.

By Theorem 12.9, these are the only such codes (i.e. the generator polynomial)



Check Polynomials and Parity-Check Matrices

The check polynomial of  generated by  is the polynomial  such that .

For any polynomial  is a codeword of code  if and only if , where  is the
parity-check polynomial of .

Note: Although it is true that ,  does not generate the dual code 
of . Namely, the fact that  in  does not carry the same meaning as the corresponding
vectors in  being orthogonal.

If  is an  code with parity-check polynomial , then:

Hamming Codes Are Cyclic

Irreducible polynomial  of degree  is a primitive polynomial iff  is a primitive element in
. Informally, a primitive element of a finite field is an element that "generates" every member

of the field if raised to a high enough power (we will formally define this later).

If  is a primitive polynomial of degree  over , then the cyclic code  is the Hamming
code .

E.g. we find the ternary (so ) cyclic codes of length  by factoring
, implying that there are  divisors of  in . Each of

these generate a cyclic code.

This must exist by Theorem 12.9

Note how this is how a parity-check matrix works; what structure underlies the two concepts?

 is a parity-check matrix for  (and thus a

generator matrix for ). Note that the structure is similar to the generator matrix for  itself, but
with the polynomial's coefficients in reverse order with respect to the generator polynomial .
The dual code  is also cyclic and is generated by the reciprocal polynomial

In the non-binary case, we should multiply  by  to make it monic
The polynomial  is a member of 

The columns of the parity-check matrix are formed by the binary representations of
 where  is the primitive element of the field



More generally,  is a cyclic code if  and  are relatively prime.

Pages 141-144, 146-153

E.g.  is irreducible over , so  is a field of order . We
note that  is a primitive element of the field since

. From this,

we find the parity-check matrix , which is clearly a (cyclic version of

a) Hamming code parity-check matrix, namely . Notice the columns are ordered as
described in the first point



Chapter xx - BCH Codes
Chernousov goes off the rails!

Hamming codes are cool, but they can only correct one error. We need more…

Basic Definitions

To encode codeword , we represent it by polynomial  and multiply it
by its generator polynomial  to get codeword .

Example

The field  has primitive element . We can construct a  code that
can correct  errors by finding a generator polynomial  with roots . We find such a 
in the product of the minimal polynomials of  and :

.

Decoding BCH Codes
Decoding BCH codes is polynomially analogous to syndrome decoding: for sent codeword  and
received codeword , we define the error polynomial .

The first syndrome  is computed by substituting  into : 

BCH Code Definition

Let element  be of order  in a finite field . A  BCH code has length  and design
distance  is a cyclic code generated by the product of distinct minimal polynomials in  of
elements .

Usually, we take  to be a primitive element of , so .

A BCH code of odd design distance  can correct at least  errors.

For the binary case ,  is the product of the distinct minimal polynomials of odd powers of

primitive element  from  to , i.e. 

We can write  as  for some powers .



We can define each subsequent syndrome (up to syndrome ) by using the corresponding power
of : for , 

We define the error locator polynomial
.

Example

We wish to decode the  code generated by . Assume our
message is , so we transmit  (i.e. ). Say we receive

, which has  errors.

We know  by the definition of a codeword since  is primitive

So  where  for .

BCH Decoding Scheme

To decode a BCH code, we must determine if there is a value of  and choices of field elements
 that are consistent with all the syndromes, i.e. .

If a solution exists, the powers in  where  tell us directly which bits need be
toggled

Notice that the roots of this polynomial are the inverses of 

From the received word, we get 

We compute the syndromes and reduce using the power table for :
, , etc. up to 

We note that . So, we get the system of equations

. We can solve this to define  in terms of powers of 

We find the error polynomial is . We find the roots
by simply searching for  where . In this case, 

The inverse of this root is , and since we also know , we have .

So, the errors are in positions  and .



Chapter yy - Golay Codes
Hamming didn't finish his homework

There exist other nontrivial, non-Hamming codes with the same parameters as Hamming codes that

also satisfy the sphere-packing bound  (i.e. are perfect codes).

Non-Hamming Triples
Golay discovered three other triples  satisfying the sphere-packing bound that are not
parameters of a Hamming code:

(non-perfect) linear codes for  (binary) and  (ternary) exist; these are the Golay
codes.

These triples also appear to be combinatorial results in addition to coding-theoretical (algebraic) ones

The  Binary Golay Code 
It is convenient to extend the Golay  code into the extended Golay  code by adding
an extra parity bit that makes the weight of every codeword even.

Two such codes were discovered by Golay in 1949

 for 

 for 

 for 



The extended Golay  code (I didn't want to copy this into TeX myself)

The extended Golay  code generated by  has distance .

Self-Orthogonality

Any two rows of the matrix representing  are orthogonal to each other.

A linear code  is self-orthogonal iff  and self-dual iff 

We find that since  have the same dimension and , the parity check matrix
 is a generator matrix for .

The  Ternary Golay Code 

Note: we can express  as  where  is a  symmetric matrix (i.e. )
Note: every row of  is orthogonal to every other

This can be proven by showing the first row is orthogonal to itself, then using the cyclic symmetry
of  (formed from " " by removing the first row and column).

Minimum distance: .


