

Chapter 1 - Introduction to Codes
This is where most (though not all) students realize this course isn't about programming

Code Definitions
A code is given set of codewords, which are in turn finite sequences of symbols from the code's
Alphabet . E.g. is a code.

A word or vector is any sequence of symbols from , so the set of words of size is
. Not all words are codewords, i.e. . Generally, we

endeavour to encode words into codewords.

A code can be written as an array where the rows are the codewords of . E.g. from earlier

is represented by the matrix .

Distance
The Hamming distance between vectors is defined as the number of places in
which they differ.

The Hamming distance is a distance function because it satisfies

The minimum distance of code is the smallest distance between any two codewords in the
code. So, because and have distance .

A q-ary code is a code with alphabet

A binary code has alphabet
If each codeword has the same length , the code is a block code.

Basic Code Parameters

An code has codewords of length (i.e. a length of) with minimum distance

1. if and only if
2. for all and

3. for all (the triangle inequality)

Formally,

Error Detection and Correction

Channels
We assume vector is transmitted and vector is received, possibly having been distorted.

A communication channel is q-ary symmetric if each symbol has the same probability of being
received in error, and each of the possible errors for a given symbol is equally likely.

Pages: 1-10

Theorem 1.9

A code can detect up to errors in a given codeword if , and correct up to errors
if .

By corollary (1.10) a code can detect up to errors and correct up to

errors

Chapter 2 - The main coding theory problem
The main problem of coding theory is that I decided to take coding theory

What Makes a Good Code?
"Good" codes generally have

Equivalent Codes
Two -ary codes are equivalent of one can be obtained from the other by

Distances between codewords are invariant under this operation, so equivalent codes have the same
parameters , and thus have the same error detection and correction capabilities.

LEMMA 2.3 Any -ary code over alphabet is equivalent to an
code containing the zero vector

Optimizing
We use to denote the largest such that a -ary code exists, i.e. the number of
codewords that can exist in a code given and .

Small so that transmission is fast

Large to require less codewords per message

Large to correct many errors

Coding Theory

The main problem of coding theory is the optimization of one parameter of a code
given values for the other two.

1. Permutation of the positions of the code → permutation of the columns of the code's matrix

2. Permutation of the symbols of the code → (internally) relabelling the symbols in a column of the
code's matrix

It is often helpful to assume WLOG that a code contains when answering questions regarding
.

, namely when

Aside: the number of -ary codes is

Binary Codes

Spheres and Sphere Packing
A sphere of radius around vector is the set of vectors in whose distance from is
less than , i.e.

For error-detecting codes, we have , implying that the spheres with radius centered
on the codewords of are disjoint. This implies that we can simply pick the (closest) sphere a
received vector is in to decode it. This is an instance of nearest neighbour decoding.

A sphere of radius in contains vectors

Codes that reach the sphere packing bound are perfect codes; the spheres of radius centered at a
perfect code's codewords "fill" all of without overlapping.

, namely when is (or is equivalent to) the -ary repetition code of length

Theorem 2.7

For odd , a binary code exists if and only if a binary code exists.

Corollary 2.8

For odd , . Thus, for even ,

Aside: the terms in this series correspond to the number of vectors of distance from the center
of the sphere.

Sphere Packing Bound

A -ary -code satisfies

This clearly follows from the sphere population definition

E.g. The binary repetition codes of length are perfect codes

Balanced Block Designs

The parameters are not independent; we find the following constraints (among others)

A balanced block design is symmetric if , which implies as well.

We can describe a balanced block design by an incidence matrix, where the columns correspond to
blocks, rows correspond to points, and each entry is or depending on whether a particular point is
in a particular block.

Aside: balanced block designs have applications beyond coding theory, e.g. statistical testing
combinations of fertilizers on different crops.

Pages: 11-29

Balanced Block Design

A balanced block design is a set of points/varieties with a collection of subsets of itself,
called blocks. For fixed , we have

Each block contains points

Each point lies in blocks

Each pair of points occurs together in blocks

We define block designs by their parameters, i.e. we would say "a -design"
E.g. the seven-point plane represents a balanced block design

 is the total number of points in the design
 is the number of pairwise occurrences of a given point with any other point

https://en.wikipedia.org/wiki/Fano_plane

Chapter 3 - Finite Fields
It's pronounced "gal-WUAH"

Recap: Algebraic Structures

The following properties are implied by this definition:

Aside: combining and with inverses lets us define operations like and

Finite Fields: Basic Definitions
A finite field with order is a field with a finite number of elements.

Field

A field is a set of elements equipped with addition and multiplication operations that
satisfies the following properties:

A field must also have the identity elements and , satisfying for all :

1. Closure under and

2. Commutative and

3. Associative and

4. Distributivity:

1. Additive Identity:

2. Multiplicative Identity:
3. Additive inverse: exists where

4. Multiplicative Inverse: exists where

Zero absorption/annihilation: for all

Cancellation law:

Abelian Ring (in terms of field)

A abelian ring is also a set equipped with and that has the same properties as a field except
the guarantee of multiplicative inverses for all elements.

E.g. the ring is a field (and thus a finite field) if and only if is a prime number.

All fields for a given share the same structure; the structure in general is known as the Galois field
of order , denoted .

Modular Arithmetic
Integers and are congruent modulo (denoted) if for some integer .
Informally, and are congruent if they have the same remainder when divided by .

We find that for and , we get and , which further implies
(all).

Euler Totient Function
We define the Euler totient function or Euler indicator as the function

The Chinese remainder theorem states that if and only if .

Primitive Elements
The order of an element of a finite field is the smallest natural number such that .

Theorem 3.2

If a field of order exists, must be a prime power, i.e. for some prime .

Aside: this mirrors the structure of a quotient space

This can be encapsulated into a field if and only if is prime, since otherwise we could find
some , which cannot happen for nonzero in a field.

So, is the number of integers less than or equal to that are relatively prime with .

If is a prime number, then and for any
The second fact is true because all have a factor in common with

If we denote as the set of integers in that are not -divisors, then since every
number sharing a factor with is by definition a -divisor (i.e. can be multiplied with another
element of to yield).

This implies that for all

The nonzero elements of any finite field can be written as powers of a single element

A primitive element is an element of order in a finite field

Polynomials

Minimal Polynomials

Every element of a finite field is a root of the equation and is a root of some
polynomial .

For element , minimal polynomial of is the monic polynomial of least degree
with as a root.

For and with as a root, then is divisible by the minimal polynomial of .

Primitive Polynomials

A primitive polynomial of a field is a the minimal polynomial of a primitive element of a field.

Reciprocal Polynomials

The following statements are equivalent:

Thus, successive powers of eventually generate every member of , so

So, since every element in the field can be written this way, we can write any multiplication in
as

Primitive elements aren't necessarily unique; will contain primitive elements,
namely for all that are relatively prime to

In , we (clearly) have since is by definition of order

If is primitive in , then . is also a primitive element

Existence of the minimal polynomial can be proven with the division algorithm

 must be irreducible in .

By corollary, the minimal polynomial of must divide .

If then

If is a root of , then is also a root of

Alternate Interpretation of Finite Fields
Consider , with elements . is a primitive element in this
field (since), we can "solve" using the quadratic formula to

find , i.e. we treat like a complex number.

Being a third root of unity is equivalent to being a primitive element of ; we can think of as
 or

Aside: (or more accurately,) because, as mentioned,
every field with the same number elements is isomorphic. By the quotient construction of

, it has elements (namely), so it behaves the same was as any
"other" field with elements.

Application: ISBN Codes

An ISBN-Code is a -digit number satisfying

Textbook pages: 31-40, Notes pages: 47-55.

1. If is a nonzero root of , then is a root of the reciprocal polynomial of

2. Polynomial is irreducible reciprocal polynomial is irreducible

3. If is the minimal polynomial of some nonzero , then a scalar multiple of the
reciprocal polynomial of is a minimal polynomial of

4. A polynomial is primitive a scalar multiple of its reciprocal polynomial is primitive

The other root is , so we have

So, it follows that , implying that for some

By inspection, we find works, so ; is a primitive third root of unity.

Similarly, and .

If a single digit is unknown, we can figure out what it should be; there can only be one digit that
satisfies the equation

Chapter 4 - Vector Spaces over Finite Fields
Linear Algebra I Speedrun

For future chapters, we will find it useful to perform operations on codewords themselves, specifically
the operations defined in a vector space.

For prime power , we define scalars as and vectors as . We define vector
addition and multiplication as we do for column vectors in linear algebra.

Aside: properties 1-5 define a vector space as an abelian group under .

A subspace is a subset of a vector space that is also a vector space. A subset of a vector
space is a subspace iff it is closed under and .

A set are linearly dependent if there exist scalars such that
.

Vector Space Axioms

A vector space is a set (e.g.) with operations and satisfying the following
properties:

Note that commutative multiplication and multiplicative inverses were not defined

1. Closure under
2. Associative

3. Additive identity

4. Additive inverse

5. Commutative
6. Closure under

7. Distributive law:

8. Associative

9. Multiplicative identity

The set of all linear combinations of a subset of vectors in is clearly a subspace of
.

Therefore one of the vectors in can be written as a linear combination of the
others

A basis of vector space is a linearly independent set of vectors in that generate , i.e. a minimal
generating set.

The dimension of (denoted) is if a basis for has vectors.

Pages: 41-45

If such scalars don't exist, is linearly independent. If this is the
case, we have the implication .

E.g. is a basis of .

Every vector in can be uniquely represented as a linear combination of basis vectors.

If is a non-trivial subspace of , then any generating set of contains a basis of ; this
basis is formed by removing redundant vectors from the generating set until it is linearly
independent.

Then, itself will have vectors since we operate over the field .

So, .

Chapter 5 - Linear Codes
Linear Code Definitions

A linear code is a -dimensional subspace of . We may also refer to this as a linear
 code to specify minimum distance.

A linear code must contain by the definition of a vector (sub)space.

Weight

The weight of a vector in a linear code is the number of non-zero components of , i.e.

But why Tho?

Advantages of Linear Codes

Linear Code

A linear code over is a subspace of for positive integer . So, a linear code is
closed under addition and scaling: for any words , and for scalar

.

E.g. is a binary linear code

E.g. defined above is a linear code.

For in a linear code,

THEOREM 5.2 Thus, the minimum distance of a linear code is the smallest weight of non-
zero codeword, i.e.

Finding the minimum distance of the code requires checking codeword

weights instead of making comparisons

We can specify a linear code by providing a basis for it, instead of listing all the codewords like
we would for a general code

Encoding and decoding linear codes is elegant; decoding a general code can be clunky

Disadvantages of Linear Codes

Generator Matrices
The generator matrix of a linear code is a matrix whose rows form the basis of a linear

 code.

Equivalence of Linear Codes
Two linear codes are equivalent if one can be obtained from the other by permuting the positions of
the code or scaling symbols in a fixed position

Standard Form

Linear -ary codes are only defined when is a prime power.
In practice, selecting a slightly larger then necessary isn't a big issue though

There exist strong(er) codes that aren't linear, so a linear code might not be optimal (e.g.
might be defined by a non-linear code)

E.g. has generator matrix

E.g. a -ary repetition code of length is a code with generator matrix

Theorem 5.4

Two matrices generate equivalent linear codes over if one matrix is obtainable from
the other by

1. R1 Permuting the rows

2. R2 Scaling a row
3. R3 Adding a scaled row to another row

4. C1 Permuting the columns

5. C2 Scaling a column

The row operations R1 , R2 , and R3 simply modify the basis for the same code, i.e. they
preserve the code itself, not just equivalence

Note: since these operations define row reduction, row reduction preserves equivalence

The column operations convert the generator matrix to one for an equivalent code

THEOREM 5.5 Standard form can be obtained by performing the operations R1 , R2 , R3 , C1 , C2 on
the generator matrix in question.

Pages: 47-54

Standard Form

The standard form of a generator matrix for code is , where is the identity
matrix and is a matrix. Standard form

In general, we can find the standard form by row reducing until columns for each standard basis
vector exist, then permuting the columns as necessary

Another algorithm is outlined in the text on page 51.

Chapter 6 - Encoding and Decoding Linear Codes
Encoding
Let be one of the possible words. We encode by multiplying it by the

generator matrix for our code . So, our encoded message is where is the th row

of .

When is in standard form (i.e.), then , where

, being the th entry of .

Decoding
For sent vector and received vector , we define the error vector as .

Cosets

For linear code over and vector , we define the coset of as
.

So, our encoding is a function that maps

The first digits are just the message itself (message digits); the rest of the digits are check
digits that exist as redundancies to protect the message against noise. This clearly illustrates the
purpose of encoding.

E.g. the cosets of are (i.e. just itself) and
. Note how every vector in is in one of these

cosets.

Aside: cosets and equivalence classes are different terms for the same thing; is the
equivalence class of with respect to .

Lagrange's Theorem (Theorem 6.4)

For code over :

Every vector is in some coset of

Every coset of contains exactly vectors

For a given coset, the vector with the smallest weight is the coset leader.

Slepian Array

The Slepian can be constructed as follows

E.g. the Slepian of is

Decoding a Linear Code

Finally

We decode received vector by finding it in the Slepian. The vector at the beginning of its row is the
error vector , so the first vector in its column will be the nearest neighbour in , and thus the
decoded vector since

There is no partial overlap of cosets: either cosets are the same or entirely disjoint.

This implies that is partitioned by cosets of any of its subspaces

E.g. the coset leader of is , and the coset leader of is (or)

Multiple vectors may be of this minimum weight; picking one at random to be the coset leader
suffices

Slepian / Standard Array

The Slepian or standard array of a linear code is the (a) array of containing
all the vectors in where

In particular, the we order the cosets such that

The first row consists of the codewords of , starting with

The first row consists of the coset leaders of each coset defined by

Each row is a coset

1. List the codewords of , starting with
2. Chose the word of the smallest weight that isn't already in the array. List the coset

 in that row, where is under for each in the first row.

3. Keep repeating 2) until the array is complete.

Probability of Error Correction

For binary code with coset leaders of weight (for), then the probability

 that an arbitrary codeword is decoded correctly is , where is the

probability of a bit being flipped due to channel noise.

Pages: 55-61

So, the decoded vector is the first vector in 's column.

The error rate of is defined as

Chapter 7 - Dual Codes, Parity-Check Matrices and
Syndrome Decoding
Dual Codes
The dual code of linear code is the set of vectors that are orthogonal to every
codeword of , i.e.

LEMMA 7.2 If such has generator matrix , then if and only if , where is the
transpose of .

THEOREM 7.3 is a linear code of dimension , i.e. is a linear code.

THEOREM 7.5 For any linear code ,

Parity Check Matrices
The parity-check matrix for code is a generator matrix of .

The rows of the parity-check matrix are parity checks on the codewords. Namely, they constrain
certain linear combinations to be , encoding the additional structure built into the codewords.

Finding a Parity-check Matrix

E.g. for , can be found by inspection.

So, is an matrix satisfying .

We can equate ; thus, we can completely define a linear code by a
parity-check matrix, much like we can with its generator matrix.

E.g. has parity-check matrix .

E.g. Parity-check matrix defines the code

Theorem 7.6

If is the standard form of a generator matrix for linear code , then the parity-
check matrix is defined as

A parity check matrix is in standard form if

Syndromes

Syndrome Definitions and Theorems

For vector , its syndrome is defined as the row vector ,
where is the parity-check matrix of linear code .

LEMMA 7.8 Two vectors and are in the same coset of if and only if they have same syndrome,
i.e.

Syndrome Decoding

For large , array decoding is inefficient because it requires searching every entry in the array. As
, syndrome decoding becomes more efficient compared to array decoding because it

leverages LEMMA 7.8 to find the coset of in time.

First, we must augment the standard array by appending the syndrome of each coset leader to
the end of its corresponding row.

E.g. has generator matrix , so it has parity check matrix

THM 7.6 finds parity-check matrices in standard form.

We can reduce parity-check matrices to standard form like we did for generator matrices

If , then , and vice versa

So, there is a bijection between cosets and syndromes

Syndrome Decoding

The syndrome decoding algorithms is as follows for received vector

1. Calculate the syndrome of .

2. Locate in the syndromes column of the array.

3. In the row where is located, find and decode as normal, i.e. the column header of
this column is the decoded vector.

Pages: 67-74

Aside: when implementing this, we can get even more efficient: we calculate , find its coset

leader in the syndrome lookup table that has columns for each syndrome and its
corresponding coset leader. Then, the decoded vector is ; the structure of the
whole Slepian is implied here.

Chapter 8 - Hamming Codes

Hamming codes are a family of linear, single-error-correcting codes over any with elegant
encoding and decoding schemes. Hamming codes are most conveniently defined by their parity check
matrices.

Hamming Code Definition

The redundancy of the code is the number of check-symbols the code has.

Obligatory 3b1b plug: https://www.youtube.com/watch?v=X8jsijhllIA
Encoding Simulator: https://visualizer-tan.vercel.app/#/heyming

Binary Hamming Code

The binary Hamming code is the code whose parity-check matrix has dimensions
 and whose columns are the distinct non-zero vectors of .

Note that the columns can be in any order; all codes with the same columns are equivalent.
In general, we write them in increasing order for simplicity

E.g. A parity-check matrix for ; we see that the corresponding is

, so is the binary repetition code.

E.g. A parity-check matrix for .

Theorem 8.2

For , the binary Hamming code :

1. is a code

2. has minimum distance , and is thus single-error correcting
3. Is a perfect code

Proof sketch: 2) follows from every nonzero codeword having a weight of or higher, 3) follows
from the sphere packing bound directly

https://www.youtube.com/watch?v=X8jsijhllIA
https://visualizer-tan.vercel.app/#/heyming

Decoding Hamming Codes
 being perfect implies the following properties

Extended Binary Hamming Codes
We obtain the extended binary Hamming code by adding a parity-check to .
These codes are no better at decoding completely (in fact, they are worse because they use an extra
bit), but provide more error detection, making them better for incomplete decoding.

The parity-check matrix for is created by right-appending a column of s, then bottom-
appending a row of s to to the parity-check matrix for .

The decoding process is as follows:

Relating and Linear Independence

There are coset leaders, which are precisely the vectors of with a weight of
or lower (i.e.)

Thus, the syndrome of where the is at place is the th column of

Decoding Hamming Codes

1. Calculate the syndrome of the received vector

2. If , then (we assume) was the codeword sent, so no error occurred

3. If , we assume one error occurred; is the binary number indicating the position
of the error.

E.g. for the parity check matrix given earlier, if we receive , then
, indicating the error is at position . So, is decoded as .

If the parity bit (i.e. last bit) of is
If the rest of the bits are also , then no errors occurred

Otherwise, we assume at least two errors have occurred, which we cannot correct

If the parity bit of is
If the rest of the bits are , assume a single error at the last place

Otherwise, there is an error at the place indicated by the binary interpretation of , like
before

Theorem 8.4

-ary Hamming Codes
For , any columns of must be linearly independent. So, for given redundancy , a

 code can be constructed by finding a set of nonzero vectors in where any
columns are linearly independent.

For , a vector has nonzero scalar multiples, so can be partitioned into

 equivalence classes, where for some , i.e. and are linearly dependent.

We form by taking one column from each equivalence class.

THEOREM 8.6 is a perfect single-error-correcting code.

Decoding -ary Hamming Codes

For linear code over with parity-check matrix any columns of are
linearly independent, but any set of columns of are linearly dependent.

Proof: follows from the property that

This property characterizes , so we can establish for any given .

Any different matrices generated this way are equivalent.

Aside: this is a quotient structure.

Finding for a -ary Hamming code

A parity-check matrix for can be formed by listing all the nonzero -tuples in
whose first nonzero entry is .

E.g. has parity-check matrix .

E.g. has parity-check matrix .

E.g. has the parity-check matrix

COROLLARY 8.7 For prime power and , for some .

Hamming codes are perfect, single-error correcting codes, so its nonzero coset leaders are the
vectors of weight in . So, implies no errors and implies an (assumed) single
error. A coset leader for looks like , where the is at the th entry. So, , where

 is the th column of . So, the error is corrected by subtracting from the th entry of .

Shortening Codes
We can shorten a code of length to code of length by selecting any codewords in with
symbol at position (both fixed), then deleting the th entry from each word to form .

Pages: 81-90

E.g. For , and received vector , we find

. is at the th position of , so we decode as .

If is , then will be , where

We get the corresponding parity-check matrix by deleting the corresponding column of

Chapter 12 - Cyclic Codes
Insert Ring Cycle pun here

A linear code is a cyclic code if each cyclic shift of a codeword is also a codeword, i.e. for any
codeword , as well.

Often, for non cyclic , we can find an equivalent cyclic by interchanging coordinates.

Polynomials
, now denoted is the set of polynomials with coefficients in .

 has degree , denoted , and leading coefficient .
 is a vector space, but not a field since multiplicative inverses do not exist.

Division Algorithm

For any polynomials , there exists a unique quotient and remainder such
that , where .

The Ring of Polynomials

Polynomials and are congruent , denoted , if
is divisible by , i.e. .

We define as the ring of polynomials over modulo . This ring's domain comprises
every polynomial in such that (i.e. "smaller" polynomials), and addition
and multiplication are "carried out ".

Reducibility

E.g. is a cyclic code

E.g. is a cyclic code

Aside: this is the same structure as the division algorithm for (ring shenanigans…)

It follows that .

E.g. the ring has domain ; these are the values that must
populate the addition and multiplication tables.

Polynomial is reducible in field iff there exist satisfying
 where . Informally, is reducible if it can be "reduced"

into smaller factors.

Cyclic Codes

Definition and Characterization as Polynomials

We consider the ring , i.e. polynomials modulo .

For polynomial in , we define a cyclic code as the subset of consisting of all
(polynomial) multiples of , reduced , i.e.

 is only a field when is irreducible in .
Irreducibility for polynomials is like primality for integers: any monic polynomial can be factored
into a unique set of irreducible polynomials

Lemma 12.3: Useful Observations for Factoring Polynomials

A polynomial has linear factor iff

A polynomial in of degree or is irreducible if and only if for all in .

Over any field,

, so we can reduce any polynomial by replacing with , by , by , etc

Multiplying by corresponds to a cycle shift, multiplying by corresponds to a cycle shift
through positions.
Polynomials act like (and correspond to)
vectors . So, we can interpret a code to be a subset of either space; it
is algebraically useful to interpret it as a polynomial.

Theorem 12.6 - Characterizing cyclic codes

A code in is a cyclic code if and only if we have, for polynomials in ,

 (note that this is stronger than simply being
closed under multiplication since is arbitrary in)

In ring theory terms, cyclic codes are the ideals of the ring .

We prove by considering and , respectively

Generator Polynomials

We find all the cyclic codes in are in its entirety, , , with
respective generator polynomials , , ,

To find all the -ary cyclic codes of length , we

E.g. the code in where produces the distinct codewords , , ,
, so from before.

Theorem 12.9

If is a non-zero cyclic code in , then

This is the generator polynomial of

A unique monic polynomial of smallest degree exists in

 is a factor of

 may contain other polynomials of larger degree that also generate itself, e.g. the generator of
 in from before is actually ; both polynomials generate the same code

In ring theory terms, every ideal in is a principal ideal

The generator polynomials are pretty good for indicating how the codewords themselves are
actually formed; this is somewhat reverse-engineerable.

Theorem 12.12

If is a cyclic code with generator polynomial , then the generator

matrix of is the matrix ,

where row is formed by cycling times.

Factorize over into irreducible polynomials
If has distinct factors (remember, these are polynomials), it has divisors (since they
each can either be part of the divisor's factorization or not), each generates a cyclic code.

By Theorem 12.9, these are the only such codes (i.e. the generator polynomial)

Check Polynomials and Parity-Check Matrices

The check polynomial of generated by is the polynomial such that .

For any polynomial is a codeword of code if and only if , where is the
parity-check polynomial of .

Note: Although it is true that , does not generate the dual code
of . Namely, the fact that in does not carry the same meaning as the corresponding
vectors in being orthogonal.

If is an code with parity-check polynomial , then:

Hamming Codes Are Cyclic

Irreducible polynomial of degree is a primitive polynomial iff is a primitive element in
. Informally, a primitive element of a finite field is an element that "generates" every member

of the field if raised to a high enough power (we will formally define this later).

If is a primitive polynomial of degree over , then the cyclic code is the Hamming
code .

E.g. we find the ternary (so) cyclic codes of length by factoring
, implying that there are divisors of in . Each of

these generate a cyclic code.

This must exist by Theorem 12.9

Note how this is how a parity-check matrix works; what structure underlies the two concepts?

 is a parity-check matrix for (and thus a

generator matrix for). Note that the structure is similar to the generator matrix for itself, but
with the polynomial's coefficients in reverse order with respect to the generator polynomial .
The dual code is also cyclic and is generated by the reciprocal polynomial

In the non-binary case, we should multiply by to make it monic
The polynomial is a member of

The columns of the parity-check matrix are formed by the binary representations of
 where is the primitive element of the field

More generally, is a cyclic code if and are relatively prime.

Pages 141-144, 146-153

E.g. is irreducible over , so is a field of order . We
note that is a primitive element of the field since

. From this,

we find the parity-check matrix , which is clearly a (cyclic version of

a) Hamming code parity-check matrix, namely . Notice the columns are ordered as
described in the first point

Chapter xx - BCH Codes
Chernousov goes off the rails!

Hamming codes are cool, but they can only correct one error. We need more…

Basic Definitions

To encode codeword , we represent it by polynomial and multiply it
by its generator polynomial to get codeword .

Example

The field has primitive element . We can construct a code that
can correct errors by finding a generator polynomial with roots . We find such a
in the product of the minimal polynomials of and :

.

Decoding BCH Codes
Decoding BCH codes is polynomially analogous to syndrome decoding: for sent codeword and
received codeword , we define the error polynomial .

The first syndrome is computed by substituting into :

BCH Code Definition

Let element be of order in a finite field . A BCH code has length and design
distance is a cyclic code generated by the product of distinct minimal polynomials in of
elements .

Usually, we take to be a primitive element of , so .

A BCH code of odd design distance can correct at least errors.

For the binary case , is the product of the distinct minimal polynomials of odd powers of

primitive element from to , i.e.

We can write as for some powers .

We can define each subsequent syndrome (up to syndrome) by using the corresponding power
of : for ,

We define the error locator polynomial
.

Example

We wish to decode the code generated by . Assume our
message is , so we transmit (i.e.). Say we receive

, which has errors.

We know by the definition of a codeword since is primitive

So where for .

BCH Decoding Scheme

To decode a BCH code, we must determine if there is a value of and choices of field elements
 that are consistent with all the syndromes, i.e. .

If a solution exists, the powers in where tell us directly which bits need be
toggled

Notice that the roots of this polynomial are the inverses of

From the received word, we get

We compute the syndromes and reduce using the power table for :
, , etc. up to

We note that . So, we get the system of equations

. We can solve this to define in terms of powers of

We find the error polynomial is . We find the roots
by simply searching for where . In this case,

The inverse of this root is , and since we also know , we have .

So, the errors are in positions and .

Chapter yy - Golay Codes
Hamming didn't finish his homework

There exist other nontrivial, non-Hamming codes with the same parameters as Hamming codes that

also satisfy the sphere-packing bound (i.e. are perfect codes).

Non-Hamming Triples
Golay discovered three other triples satisfying the sphere-packing bound that are not
parameters of a Hamming code:

(non-perfect) linear codes for (binary) and (ternary) exist; these are the Golay
codes.

These triples also appear to be combinatorial results in addition to coding-theoretical (algebraic) ones

The Binary Golay Code
It is convenient to extend the Golay code into the extended Golay code by adding
an extra parity bit that makes the weight of every codeword even.

Two such codes were discovered by Golay in 1949

 for

 for

 for

The extended Golay code (I didn't want to copy this into TeX myself)

The extended Golay code generated by has distance .

Self-Orthogonality

Any two rows of the matrix representing are orthogonal to each other.

A linear code is self-orthogonal iff and self-dual iff

We find that since have the same dimension and , the parity check matrix
 is a generator matrix for .

The Ternary Golay Code

Note: we can express as where is a symmetric matrix (i.e.)
Note: every row of is orthogonal to every other

This can be proven by showing the first row is orthogonal to itself, then using the cyclic symmetry
of (formed from " " by removing the first row and column).

Minimum distance: .

